自动提示工程师

自动提示工程师(APE)

APE

图片来源:Zhou等人,(2022) (opens in a new tab)

Zhou等人,(2022) (opens in a new tab) 提出了自动提示工程师 (APE),这是一个用于自动指令生成和选择的框架。指令生成问题被构建为自然语言合成问题,使用 LLMs 作为黑盒优化问题的解决方案来生成和搜索候选解。

第一步涉及一个大型语言模型(作为推理模型),该模型接收输出演示以生成任务的指令候选项。这些候选解将指导搜索过程。使用目标模型执行指令,然后根据计算的评估分数选择最合适的指令。

APE 发现了一个比人工设计的“让我们一步一步地思考”提示更好的零样本 CoT 提示 (Kojima 等人,2022 (opens in a new tab))。

提示“让我们一步一步地解决这个问题,以确保我们有正确的答案。”引发了思维链的推理,并提高了 MultiArith 和 GSM8K 基准测试的性能:

APECOT

图片来源:Zhou等人,(2022) (opens in a new tab)

本文涉及与提示工程相关的重要主题,即自动优化提示的想法。虽然我们在本指南中没有深入探讨这个主题,但如果您对此主题感兴趣,以下是一些关键论文: